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Abstract. We have developed a ring-cavity resonator that can be used to measure the absolute frequencies
of optical transitions with an uncertainty below 40 kHz. The length of the resonator is calibrated against
a reference laser locked to the D2 line of 87Rb, the frequency of which is known with 6 kHz accuracy.
We demonstrate the power of this technique by measuring the absolute frequencies of various hyperfine
transitions in the D1 line of 133Cs. Our results agree with earlier measurements using the frequency-comb
technique, and have similar accuracy. Measurement of the D1-line frequency could lead to a more precise
determination of the fine-structure constant. We also report a precise value of A = 291.918(8) MHz for the
hyperfine constant in the 6P1/2 state.

PACS. 06.30.Ft Time and frequency – 42.62.Eh Metrological applications; optical frequency synthesizers
for precision spectroscopy – 32.10.Fn Fine and hyperfine structure

1 Introduction

High-precision measurements of atomic energy levels have
played an important role in the development of physics.
The most notable example is the measurement of the
Lamb shift of the 2P state of hydrogen, which led to the
birth of quantum electrodynamics. In recent years, the en-
ergy levels of alkali atoms have become particularly impor-
tant because these atoms can be laser cooled to ultra-low
temperatures [1] for further use in high-resolution spec-
troscopy experiments. For example, precise measurements
of the D1 lines in Cs [2], Rb, and K [3], combined with
measurements of the photon-recoil shift using laser-cooled
atoms in an atom interferometer [4] and precise mass mea-
surements in a Penning trap [5], could lead to a new high-
precision determination of the fine-structure constant α.
Furthermore, a precise value of the frequency of the D2

line in Cs [6,7] is required for atom-interferometric mea-
surements of the local gravitational acceleration [8]. Heavy
alkali atoms are also being used in sensitive measurements
of discrete-symmetry violations in the laws of physics, such
as parity [9] and time-reversal symmetry [10]. In these ex-
periments, it becomes necessary to make a careful compar-
ison of the experimental data with theoretical predictions.
Precise measurements of hyperfine-structure and isotope-
shifts in atomic lines can help in fine-tuning the atomic
wavefunction used in such calculations, especially in ac-
counting for the contribution from nuclear interactions.

a e-mail: vasant@physics.iisc.ernet.in

In this article, we describe in detail a technique for
measuring the absolute frequency of optical transitions
with <40 kHz accuracy. Recently, the smallest errors in
frequency measurements have been reported using the
frequency-comb technique. For example, uncertainty of
<50 kHz has been achieved for measurements on the D
lines of Cs using this technique [2,7]. In these cases, the
width of the resonance line itself limits the obtained ac-
curacy. Our relatively simpler technique offers similar ac-
curacy in such measurements. In addition, we can verify
our estimate of systematic errors by varying the reference
frequency over a narrow range. Other techniques for fre-
quency measurement, such as the use of Fabry-Perot cavi-
ties [11], acousto-optic modulators [12], level-crossing [13]
and optical double-resonance spectroscopy [14], have ac-
curacy limited to about 1 MHz.

The technique described here combines the advantages
of using tunable diode lasers to access atomic transitions
with the fact that the absolute frequency of the D2 line in
87Rb has been measured with an accuracy of 6 kHz [15].
A frequency-stabilized diode laser locked to this line is
used as a frequency reference, along with a ring-cavity res-
onator whose length is locked to the reference laser. For a
given cavity length, an unknown laser locked to an atomic
transition has a small frequency offset from the nearest
cavity resonance. This offset is combined with the cavity
mode number to obtain a precise value for the frequency
of the unknown laser. We have earlier used this technique
to make precise measurements of the absolute frequencies
of the D1 lines in 39K, 85Rb, and 87Rb [3], D2 lines in
85Rb [16] and 39K [17], and isotope shifts and hyperfine
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Fig. 1. Schematic of the experiment. Figure key – LIA: lock-in
amplifier, PZT: piezoelectric transducer, AOM: acousto-optic
modulator, BS: beam splitter, M: mirror, PD: photodiode.

structure of the 398.8 nm line in Yb [18,19]. In this pa-
per, we apply the technique to measure the frequencies of
various hyperfine transitions in the D1 line in 133Cs. Our
results agree very well with previous measurements using
the frequency-comb technique [2].

As mentioned before, frequency measurements have
been done previously using a linear Fabry-Perot res-
onator, with a stabilized HeNe laser as the frequency ref-
erence [11]. Our use of a Rb-stabilized diode laser as the
reference has the primary advantage that there are several
known hyperfine transitions that can be used for locking
the laser. This enables us to check for certain kinds of
systematic errors that arise in difference-frequency mea-
surements. Another advantage of the ring-cavity design is
that diffraction effects are wavelength independent, as we
will see later. Furthermore, the ring cavity has a travelling
wave inside and there is no possibility of feedback desta-
bilization of the laser. The design is very compact and
the cavity is easily temperature controlled to increase its
passive stability.

2 Experimental details

The schematic of the experiment is shown in Figure 1.
The experiment uses two frequency-stabilized diode lasers
that are locked to atomic transitions using Doppler-free
saturated-absorption spectroscopy. Laser1 is the reference
laser locked to the D2 line of 87Rb. Laser2 is the un-
known laser, which in this case is locked to the D1 line
of 133Cs. The output of the two lasers is coupled into the
ring-cavity resonator. The cavity length is adjusted using
a piezo-mounted mirror to bring it into resonance with
the wavelength of Laser1. The cavity is then locked to
this length in a feedback loop. However, Laser2 will gen-
erally be offset from the cavity resonance. This offset is
accounted for by shifting the frequency of the laser using
an acousto-optic modulator (AOM) before it enters the
cavity. The error signal between the shifted frequency of
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Fig. 2. Error signal. The trace is the third-derivative error
signal as a function of displacement of the feedback grating in
the reference laser (D2 line of 87Rb). The hyperfine peaks are
labelled with the value of F ′, while the peaks in between are
crossover resonances.

Laser2 and the cavity resonance is fed back to the AOM
driver which locks the AOM frequency at the correct off-
set. The AOM frequency is read using a frequency counter.
The absolute frequency of Laser1 is known with 6 kHz ac-
curacy [15], therefore, once the cavity length (or mode
number) is known, the frequency of Laser2 is determined
very precisely.

The diode laser system used as the reference laser
(Laser1) is built around a commercial single-mode laser
diode with a nominal operating wavelength of 785 nm and
output power of 25 mW. The laser is frequency stabilized
in a standard external-cavity design using optical feed-
back from an 1800 lines/mm diffraction grating (Littrow
configuration). The grating is mounted on a piezoelectric
transducer for electronic tuning of the wavelength [20].
The short-term linewidth of the laser after stabilization
has been measured to be below 500 kHz. A part of the
output beam is tapped for saturated-absorption spec-
troscopy in a room-temperature Rb vapor cell (density
∼109 atoms/cm3). Using a combination of temperature
and current control, the diode is tuned to the 780-nm D2

line in 87Rb (5S1/2 ↔ 5P3/2 transition). It is then locked
to one of the hyperfine peaks in the spectrum by modulat-
ing the injection current and using third-harmonic demod-
ulation. Such third-harmonic detection produces narrow
error signals that are free from effects due to the Doppler
background or intensity fluctuations [21]. We have shown
earlier that this locking technique fixes the laser frequency
to within a few kHz of the peak center [16]. In Figure 2, we
show a typical error signal as the laser is scanned across
the F = 2 → F ′ transitions. All the peaks and crossover
resonances are clearly resolved. The error signal is very
symmetric about each peak center. Note that, over this
large scan range, the laser frequency has a nonlinear de-
pendence on piezo displacement.

Laser2 is a similar diode laser system operating at
895 nm for measurements on the D1 line in Cs (6S1/2 ↔
6P1/2 transition). As in the case of the reference laser, this
laser is locked to a particular hyperfine transition using
saturated-absorption spectroscopy in a room-temperature
Cs vapor cell (density 5 × 108 atoms/cm3).
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Fig. 3. Cavity modes. The figure shows the power coupled into
the cavity as the frequency of the reference laser is scanned.
The free-spectral range is 1322.63 MHz, and the width of each
peak is 28 MHz.

The ring cavity used for the frequency measurement
consists of two plane mirrors and two concave mirrors in
a bow-tie arrangement. The curved mirrors have radius of
curvature of 25 mm. The mirrors have a dielectric coating
that has a flat response over the range 760−900 nm. One of
the plane mirrors is mounted on a piezoelectric transducer
and is used to adjust the cavity length electronically. The
piezoelectric transducer has a full deflection of 6.1 µm
for a voltage of 150 V. The mirrors are mounted on ultra-
stable kinematic mounts. The mounts are fixed to a copper
plate that is temperature stabilized using a thermoelectric
cooler to increase the passive stability of the cavity.

In order to determine the stable operating region of the
cavity, we analyze the cavity using the standard ABCD
matrices for Gaussian-beam propagation [22]. It is neces-
sary to analyze the sagittal and tangential planes sepa-
rately because of the 15◦ angle of incidence on the curved
mirrors. The cavity modes are therefore elliptical. The
cavity has two beam waists, a larger one between the
plane mirrors and a smaller one between the curved mir-
rors [17]. For a cavity length of 226.5 mm and a path
length of 26.5 mm between the curved mirrors, the larger
beam waist has a 1/e2 diameter of 224 × 119 µm, while
the smaller waist has a diameter of 13.8 × 13.4 µm (at
780 nm). The larger waist has a correspondingly larger
Rayleigh range and is used for easy mode matching of
the laser beams into the cavity. The output of the lasers
is coupled into the cavity through a lens of f = 50 cm.
This results in a coupling efficiency of about 15%, which
is sufficient for ensuring stable locking to the cavity mode.

The measured cavity modes are shown in Figure 3,
which is a plot of the power inside the cavity as a function
of the laser frequency. Note that higher order modes of
the cavity are extremely well suppressed. The free spec-
tral range is 1.3 GHz, corresponding to a cavity length
of 226.5 mm. The cavity modes have a width of about
28 MHz. The cavity is locked to the reference laser by
feeding back the error signal to the piezo-mounted mirror.
Since the modes appear on a flat background, the error
signal is just the first-derivative signal. The width of the
cavity modes is similar to the linewidth of atomic tran-
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Fig. 4. The cavity fsr is determined by locking the cavity to the
unknown laser and using two lock points for the reference laser:
F = 2 → F ′ = (2, 3) shown in (a), and F = 1 → F ′ = (1, 2)
shown in (b). The cavity mode number in (b) increases by
exactly 5.

sitions used in laser stabilization, and one expects simi-
lar definition of the lock point. The relatively large width
also ensures robust locking that is insensitive to perturba-
tions over a wide dynamic range. Indeed, we have recently
shown that such a ring-cavity resonator can be used to lock
and scan a tunable laser for spectroscopy applications [23].

The most important aspect of the measurement is to
fix the mode number of the cavity uniquely. This is done
in two steps: we first measure the cavity free-spectral
range (fsr) and then use a coarse measurement of the
frequency of Laser2. The fsr measurement proceeds as
follows. We lock the cavity with the reference laser on
the F = 2 → F ′ = (2, 3) transition, as shown in Fig-
ure 4a, and measure the AOM offset for a given transition
of the unknown laser. We then shift the reference laser
to the F = 1 → F ′ = (1, 2) transition, which is exactly
6622.887 MHz higher [15,24]. This shift causes the cavity
mode number to increase by almost exactly 5, as shown
in Figure 4b. The cavity is locked to the new frequency
and the AOM offset for the same transition of the un-
known laser is measured. The difference in the two AOM
offsets along with the change in the reference frequency
gives exactly 5 times the cavity fsr. Using this method,
the fsr is determined with a precision of 20 kHz. The
next step in determining the mode number is to get a
coarse measurement of Laser2. For this, we use a home-
built wavemeter [20] that gives the frequency with an un-
certainty of 10 MHz. Thus, there is a unique mode number
that matches the resonance condition for the two laser fre-
quencies and the measured fsr. For example, at some cav-
ity length L, this length matches the resonance condition
L = n λ with a mode number of nref = 289418 for the ref-
erence laser locked to the F = 2 → F ′ = (2, 3) transition
(frequency of 384 227 981.877 MHz). The same length also
matches the resonance condition for the unknown laser
with a mode number of nunk = 252422 when the laser
frequency is AOM-downshifted by exactly 16.784 MHz
from the F = 4 → F ′ = 4 transition of the Cs D1 line.
Thus the unknown frequency of this transition is deter-
mined to be 335 112 537.917 MHz. The fsr at this length
is 1327.588 MHz. The next nearest mode satisfying the
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resonance condition has an fsr differing by 350 kHz, or
17 times the error in the determination of the fsr.

3 Error analysis

3.1 Statistical errors

The primary sources of statistical error in our technique
are fluctuations in the lock points of the lasers, the cavity,
and the AOM. To minimize such effects, we use an inte-
gration time of 10 s in the frequency counter during each
measurement of the AOM offset. We then take an aver-
age of about 50 measurements for a given transition. This
results in an overall statistical error of less than 5 kHz in
each value. The timebase in the frequency counter used to
measure the AOM frequency has a stability of better than
10−6, which translates to a negligible error of 100 Hz in
the frequency measurement.

3.2 Systematic errors

There are two classes of potential systematic errors that
we have considered. The first class of errors comes from
systematic shifts in the laser frequencies. The second class
of errors is inherent to our technique because we are really
comparing the wavelength (and not the frequency) of the
two lasers, and hence we have to account for possible dis-
persion effects. Let us first consider the shift in the lock
points of the lasers.

3.2.1 Shift of the reference laser

(i) Shift in the peak position can occur due to (a)
optical-pumping effects and (b) velocity redistribu-
tion of the atoms in the vapor cell due to ra-
diation pressure [25]. Such effects manifest them-
selves as inversion of hyperfine peaks or distortion
of the Lorentzian lineshape. We minimize these ef-
fects by using very low intensities of the pump and
probe beams in the saturated-absorption spectrome-
ter. The typical intensity in the probe beam is about
0.25 mW/cm2 compared to the saturation intensity
of 1.64 mW/cm2. The pump beam has an intensity
3 times higher. The shape of the error signals in
Figure 2 shows that our peaks have symmetric line-
shapes.

(ii) Line shifts from stray magnetic fields in the vicinity
of the cells. The primary effect of a magnetic field is
to split the Zeeman sublevels and broaden the line
without affecting the line center. However, line shifts
can occur if there is asymmetric optical pumping
into Zeeman sublevels. For a transition (F, mF ) →
(F ′, mF ′), the systematic shift of the line center is
µB(gF ′mF ′−gF mF )B, where µB = 1.4 MHz/G is the
Bohr magneton, g’s denote the Landé g factors of the
two levels, and B is the magnetic field. The selection
rule for dipole transitions is ∆m = 0,±1, depending

on the direction of the magnetic field (quantization
axis) and the polarization of the light. Thus, if the
beams are perfectly linearly polarized, there will be
no asymmetric driving and the line center is not af-
fected. We therefore use linearly polarized light to
reduce these effects. We further verify that the ef-
fects are negligible by repeating the measurements
at different locations in the laboratory, and with and
without the use of a magnetic shield around the cell.

(iii) Shift in the lock point due to the underlying Doppler
profile, peak-pulling from nearby transitions, or phase
shifts in the feedback loop. We minimize the first two
effects by using third-harmonic detection for the error
signal.

(iv) Collisional shifts in the vapor cell. The pressure inside
the cell is 0.2 mtorr, and we estimate the shift to be
less than 10 kHz. To further verify this, we repeat the
measurements with cells from different manufacturers
(which have different background contamination) and
find no significant difference.

3.2.2 Shift of the Cs laser

For the Cs D1 line, the effects of radiation pressure and
collisional shifts considered above are similarly negligible.
The typical intensity in the probe beam is 0.20 mW/cm2,
which is again much smaller than the saturation inten-
sity of 0.83 mW/cm2. The most important effects come
from optical pumping and stray magnetic fields. For the
saturated-absorption spectroscopy, we have chosen the
lin ⊥ lin configuration, i.e. a configuration with orthog-
onal linear polarizations for the pump and probe beams.
This configuration allows us to use polarizing-beamsplitter
cubes so that the counterpropagating beams have only a
small misalignment angle between them. In addition, the
extinction ratio of better than 1000:1 in the cubes ensures
near-perfect linear polarization of the beams, which makes
it less susceptible to optical-pumping effects. We further
reduce stray-field effects by using a magnetic shield [26]
around the cell to reduce the field below 5 mG. The shifts
due to this magnetic field are different for different tran-
sitions, and vary in size from 2 to 9 kHz.

The observed spectrum for one of the peaks in the D1

line is shown in Figure 5. The relatively large hyperfine in-
terval in the excited state means that the Doppler profiles
of the individual transitions are non-overlapping and there
are no crossover resonances. Each saturated-absorption
peak appears exactly at the bottom of its Doppler-
broadened line. In order to ensure that the frequency-
scan axis in Figure 5 is perfectly linear, the spectrum
is obtained by double passing the laser beam through
an AOM and scanning the AOM frequency. The scan
width is limited by the AOM bandwidth. The solid line
is a Lorentzian fit, which fits the spectrum extremely well
and shows that the lineshape is symmetric. The fit yields
a linewidth of 11 MHz, which is somewhat larger than
the natural linewidth of 5 MHz. This increase is typi-
cal in saturated-absorption spectroscopy, and is primar-
ily caused by a small misalignment angle between the
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Fig. 5. Saturated-absorption spectrum in the D1 line. The
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counter-propagating beams and power broadening from
the pump beam.

3.2.3 Dispersion effects

One important source of systematic errors arises due to
dispersion of the medium inside the cavity, which is elim-
inated by using an evacuated cavity. At a pressure of
10−2 torr, the refractive indices are the same to better
than one part in 1011. However, there could be wavelength-
dependent phase shifts at the dielectric-coated mirrors
used in the cavity. If there is an additional phase shift of
φ in one round trip in the cavity, the resonance condition
for a cavity of length L becomes

2nπ = kL + φ, (1)

where n is an integer and k is the wavevector. This could
lead to a systematic error if φ is different for the refer-
ence and unknown wavelengths. We check for such errors
by repeating the measurement at two cavity lengths, L1

and L2. If there is a differential phase shift at the mirrors
between the two wavelengths, then it can be shown that

f0 =
f1L1 − f2L2

L1 − L2
, (2)

where f1 (f2) is the frequency measured at L1 (L2), and f0

is the correct frequency. Basically, the error due to the dif-
ferential phase shift is the same at the two cavity lengths,
while the accumulated phase due to the wave propaga-
tion increases with the length. To minimize this error, we
use mirrors that have a flat reflectivity over a large wave-
length range. This is in contrast to high-finesse cavities
used in measurements with HeNe lasers where the mirror
reflectivity falls off quite sharply away from the HeNe cen-
ter frequency. The dispersion effects in such cavities are
generally much higher.

It is also important to note that this class of
wavelength-dependent systematic errors does not affect

the determination of frequency differences of the unknown
laser, up to several 10s of GHz. This is the order of magni-
tude of frequency differences that arise when determining
hyperfine structure or isotope shifts. Thus, our technique
is well suited for such measurements.

3.2.4 Diffraction effects

Diffraction effects inside the cavity appear as an addi-
tional (Guoy) phase as the beam propagates through a
cavity waist. These effects can be quite important in in-
terferometers and wavemeters. The Guoy phase is given
by [27] arctan(z/zR), where z is the propagation distance
and zR = πw2

0/λ is the Rayleigh range around a waist of
radius w0. In our cavity, the ABCD matrix analysis shows
that the two waist sizes are proportional to

√
λ/π [17].

Therefore, the Rayleigh ranges are identical for all wave-
lengths, and so is the Guoy phase. In effect, the concave
mirrors in the cavity impose a boundary condition on the
wavefront curvature at their locations, and this ensures
that the Rayleigh ranges are independent of wavelength.
Thus one does not expect any systematic error due to this
effect. This is an important advantage of the ring-cavity
design.

3.2.5 Other effects

An important source of error in wavemeters based on a
scanning Michelson interferometer, as described in our
earlier work [20], is the geometric alignment of the ref-
erence and unknown beams into the interferometer. Any
misalignment angle between the beams would change the
measured wavelength. By contrast, the cavity technique
used in the current work is completely insensitive to geo-
metric factors. The geometric alignment of the beam de-
termines (very sensitively) the degree of mode matching
into the cavity, but the cavity resonance condition depends
only on the wavelength. Furthermore, we check the mode
structure to verify that higher-order cavity modes are not
excited significantly (see Fig. 3), which could cause peak
pulling of the fundamental mode.

3.2.6 Summary

The estimated size of the different sources of systematic
error for the reference laser on the Rb D2 line and the
unknown laser on the Cs D1 line are listed in Table 1.

The numbers listed in Table 1 are our estimates
for these errors. However, we have several experimental
handles to verify that these errors are reasonable. In par-
ticular, the total error can be measured directly. As men-
tioned in the introduction, this ability to verify systematic
errors is one of the primary advantages of our technique.
For the reference laser, we check the total error by measur-
ing the same unknown frequency using different hyperfine
peaks to lock the reference laser. The reference frequency
changes by up to several GHz, but these changes are
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Table 1. Error budget.

Source of error Size of effect (kHz)

Reference Cs D1

1. Optical pumping and 10 10

radiation pressure

2. Stray magnetic fields 10 9

3. Laser lock to peak center 7 7

4. Collisional shifts 10 10

5. Differential phase shift at mirrors – 15

6. Misalignment into cavity 5 5

(higher-order modes)

known precisely (with few kHz accuracy). To the extent
that different hyperfine peaks have different degrees of sys-
tematic error (e.g. due to optical pumping, lineshape dis-
tortion, stray magnetic fields, lock-point definition, etc.),
the variation in the measured frequencies will reflect the
total systematic error in the reference laser. In addition,
changing the lock point of the reference laser changes the
cavity mode number and the measured AOM offset. This
checks for geometric alignment errors since the direction
of the beam entering the cavity varies slightly with the
frequency. The total error in the data also reflects the sta-
tistical error in the unknown and reference lasers. How-
ever, any systematic error in the unknown laser does not
show up in the data because we are measuring the same
transition and looking only at the variation around the
mean.

In earlier work [16], we have shown that the total un-
certainty in such a set of measurements is less than 30 kHz.
Therefore, our estimate of 20 kHz for the total systematic
error in the reference laser (adding the errors in Tab. 1 in
quadrature) is quite reasonable. In reference [15], where
the absolute frequency of the Rb reference transition was
measured, the laser was similarly locked using saturated-
absorption spectroscopy in a room-temperature vapor cell.
The intensities in the pump and probe beams were similar
to our values. Under these conditions, they found that the
laser could be locked to line center with an uncertainty
<3 kHz. Therefore, our total uncertainty of 20 kHz again
appears reasonable.

For the Cs laser, we can similarly check our estimate of
systematic errors by measuring different hyperfine transi-
tions. Again, to the extent that different transitions have
different systematic errors, the variation in the data will
reflect the total error in the measurement. This analysis is
presented in the next section where we discuss our results.

4 Results and discussion

The measured frequencies of various hyperfine transitions
in the D1 line are listed in Table 2. To check for any long
term drifts, the measurements were repeated over a period
of two months. In addition, the measurements were done
with different lock-points of the reference laser. The final
values listed each have a statistical error of less than 5 kHz.
The total systematic error from Table 1 is 31 kHz. All the

Table 2. Measured frequencies of various hyperfine transitions
in the D1 line. The first set of values is for a cavity length of
L1 = 226 mm, while the second set is for a cavity length of
L2 = 178 mm. The statistical error is less than 5 kHz.

D1 Transition Measured frequency (MHz)

L1 L2

F = 4 → F ′ = 4 335 112 537.916 335 112 537.892

F = 4 → F ′ = 3 335 111 370.236 335 111 370.225

F = 3 → F ′ = 4 335 121 730.539 335 121 730.504

F = 3 → F ′ = 3 335 120 562.862 335 120 562.842

Table 3. Consistency check 1. The frequency difference be-
tween transitions from the two ground levels (F = 3 and 4) to
the same upper level (F ′) should match the ground-hyperfine
interval listed on line 1.

Hyperfine interval (MHz)

Definition of second 9 192.632

F ′ = 3, at L1 9 192.626

F ′ = 4, at L1 9 192.623

F ′ = 3, at L2 9 192.617

F ′ = 4, at L2 9 192.612

frequencies (which are 114 nm away from the reference
wavelength) have been measured at two cavity lengths:
L1 = 226 mm and L2 = 178 mm. Within the accuracy
of the measurements, there is no significant difference be-
tween the two sets of values, hence we do not need to
correct for dispersion effects at the cavity mirrors using
equation (2).

4.1 Consistency checks

There are two kinds of internal consistency checks that we
do on the data, as illustrated below.

(i) The frequency of transitions to the same excited
state from different ground states should differ by
the ground hyperfine interval. In the case of Cs, the
ground hyperfine interval is used in the definition of
the second, and is specified to be 9192.63177 MHz.
The measured intervals from 4 transitions are listed
in Table 3. All of them lie within 20 kHz of the correct
value. Note that this is a powerful check on systematic
errors because in most other atoms also the ground
state hyperfine intervals are known with sub-kHz pre-
cision [24].

(ii) The second check on the data, as mentioned in the
previous section, is that the different hyperfine tran-
sitions should yield the same value (within the total
error) for the hyperfine-free frequency of the line cen-
ter. For the 6P1/2 state, the hyperfine constant A is
not known previously [2,28] with sufficient precision
to allow an independent check. Rather, our measure-
ments improve the knowledge of A, as discussed in
the next section. However, we can check for inter-
nal consistency among the eight measurements since
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Table 4. Consistency check 2. The different transitions
measured should yield the same value for the hyperfine-
free frequency of the line center. The average value is
335 116 048.817 MHz.

Transition Hyperfine-free frequency (MHz)

L1 L2

F = 4 → F ′ = 4 335 116 048.835 335 116 048.811

F = 4 → F ′ = 3 335 116 048.828 335 116 048.817

F = 3 → F ′ = 4 335 116 048.827 335 116 048.792

F = 3 → F ′ = 3 335 116 048.823 335 116 048.803

there is only one hyperfine interval. The hyperfine-
free frequencies obtained from each transition (using
our value of A) are listed in Table 4, and are quite
consistent with the average value. Again, it is impor-
tant to note that in many other atoms the hyperfine
constants in the excited states are already known with
high precision, and this can be another powerful check
on the measurements.

4.2 Hyperfine structure

As mentioned above, we can use our data to obtain the
hyperfine interval in the excited state. The interval is mea-
sured with an accuracy of 30 kHz. Note that many sources
of systematic error cancel in measuring this difference fre-
quency. For example, any systematic shift of the reference
laser will affect all the measured frequencies equally. Sim-
ilarly, collisional shifts will be the same for all hyperfine
components and will cancel in the difference.

Our result is compared to earlier results from refer-
ences [2,28] in Figure 6. Our value is consistent but has
better accuracy. The measured interval can be expressed
as 4A, where A is the magnetic-dipole coupling constant
in the 6P1/2 state. The value of the hyperfine constant is
therefore:

A = 291.918(8) MHz.

4.3 Center frequency

Using the data in Table 4, we can obtain the hyperfine-
free frequency of the D1 line. The average value from the
8 measurements is:

6P1/2−6S1/2: 335 116 048.817(31) MHz.

The final error of 31 kHz is the total systematic error
for each value from Table 1, including the error in the
reference laser. The standard deviation for the 8 values
is 14 kHz. As mentioned in the section on error analy-
sis, to the extent that different hyperfine transitions have
different degrees of systematic error, the standard de-
viation in the data should reflect the total error. This
shows that our estimate of 31 kHz is reasonable. Note
also that the Zeeman shift is in opposite directions for the
F = 3 → F ′ = 4 transition and the F = 4 → F ′ = 3

 6P1/2 state This work
 

Ref. [2]
(1999)

F = 3

4
1 167 672(30) 1 167 688(81) 1 167 540(320)

Ref. [28]
(1997)

Fig. 6. Hyperfine interval in the 6P1/2 state of 133Cs. The
measured interval (in kHz) in the current work is compared to
earlier work.

transition, and should cancel to some extent in the aver-
age. The above value is also consistent with the value of
335 116 048.807(41) MHz measured using the frequency-
comb technique [2].

5 Conclusion

In conclusion, we have described in detail a technique for
measuring the absolute frequencies of optical transitions.
The frequency is compared against a reference transition
in Rb using a ring-cavity resonator. The primary advan-
tage of the technique is that the reference frequency can
be varied over a range of several GHz to check for cer-
tain kinds of systematic errors. Potential systematic errors
due to dispersion effects are eliminated by evacuating the
cavity and repeating the measurement at different cavity
lengths. We have considered several other sources of sys-
tematic errors, and shown that they are all under control.

We have applied the technique to frequency measure-
ments on the D1 line of Cs. We demonstrate a precision
of 31 kHz for the center-of-gravity of the line, which is
similar to the precision obtained for the same line us-
ing the frequency-comb technique. This measurement is
important for a new sub-ppb determination of the fine-
structure constant. We have recently also completed sim-
ilar measurements on the Cs D2 line. The measurement
on the D2 line is complicated because the lineshape in
saturated-absorption spectroscopy is much more suscepti-
ble to distortion due to the effects of stray magnetic fields
and pump power, as shown in reference [29]. These ef-
fects have limited our accuracy in determining the center-
of-gravity to 55 kHz, even though we can measure (and
average over) 10 independent hyperfine components. The
final value of 351 725 718.509(55) MHz is consistent with
the value of 351 725 718.500(110) MHz measured using the
frequency-comb technique in reference [6]. A more recent
measurement with the frequency comb in reference [7] has
a much higher accuracy of 5 kHz, obtaining a value of
351 725 718.4744(51) MHz.

While we have achieved the above precision for the Cs
lines whose natural linewidth is 5 MHz, it should be possi-
ble to achieve better accuracy for narrower lines. One fun-
damental limit to our technique is clearly the precision of
6 kHz with which the reference transition is known. How-
ever, it is possible to improve this quite easily by using
the nearby two-photon transition in Rb (5S1/2 → 5D5/2

transition at 778 nm) as the reference. This transition has
a natural linewidth of only 600 kHz and its absolute fre-
quency has been measured with 2 kHz accuracy [30].
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